Polymorphic Context-free
Session Types

Dagstuhl, 13 September 2021



FreeST is

« A functional language with

« Support for multithreading (message passing and choice), equipped with
« Session types (context-free, recursion),

* Polymorphic

« Haskell-like syntax

e Call by value

* Impure



Releases

e FreeST 1.0 _ Jul 2020
* Predicative polymorphism (based on ICFP’17)
* FreeST 2.0 _ Feb 2021
« System F¥+ (based on paper in arXiv, submitted)
* Richer kinding system
* FreeST 3.0

* (To be discussed later on)



Google: freest lasige

http://rss.di.fc.ul.pt/tools/freest/
http://rss.di.fc.ul.pt/tryit/FreeST



http://rss.di.fc.ul.pt/tools/freest/

Variations on abstracted send
and recelve operations



Polymorphic lambda calculus



Kinds and Subkinding

« M _ Message

« S _ Session

* T_Type (Top)

« L_Linear

e U _ Unrestricted (Unlimited)
 TU _ default

TL

/1N
ML TU SL
IV

MU SU



Types for primitive operators

receive : = . Yb:SIL , 72a:b —= (a.b)
send : = . a —=> Vb:SL . 'a;b -0 b

fork : : .a—> ()
fst : : . Vb:TU . (a,b) — a
snd : : . Yb:TL . (a,b) —> b

* No equally pleasing way to abstract over the choice (select and match)
operators



Taking advantage of send as an
operator of a rank 2 type



Context-free sessions



Type abstraction conflicts with
linearity



A bit of the future



Duality and channel creation

T-NEwW |
AFT .T" ekT:s'm

A|TFnewT : (T,T)

 Minimum support required: a function that builds a type dual to a given type
(overline T)



The dualof operator is quite handy
FreeST 2.1

* Occurrences of the dualof operator disappear during the elaboration phase of
the compiller.

 Before elaboration:
ypel il = )k

k& dilaloR T == Tk
f e = fist [Int, Skipl $ rFeceive e

 After elaboration (before type checking):
E : dInk = Tt



Dualof of a polymorphic variable
FreeST 2.1

* Problem: polymorphic variables

newThunk : Va:SL . () —> (a, dualof a)

newThunk = Aa:SL => A_ —> new a

 How do we get rid of dualof when applied to a polymorphic type variable?

T . Ist=1:30: arpor:

Cannot compute the dual of a polymorphic variable: a



Dualof for polymorphic types

FreeST 2.2

 Introduce co-variables (Lindley Morris, ICFP 16)

» Treat the dualof operator as in the De Morgan Laws (cf. treatment of negation
in Linear Logic), getting rid of all occurrences of dualof except those applied
to a type variable; these become co-vars

e Extend type equivalence to account for co-variables

L-VAR L-CoVARr
a — Skip a - Skip



The run abstraction
Freest 2.2

« New becomes a conventional (primitive) poly function

 And we can abstract a quite common pattern: channel creation together with
fork (cf. LL interpretations of session types)

EUn = Ya:SL b1l el = (a3 = b) —0 (dugleof a - €) 6 G
run f g =

let (x, y) = new [a] in

fork $ T X;
gy




Higher-order polymorphism, Fw
FreeST 3.0

 Introduce arbitrary type operators

 Then we could have Dualof as a conventional type operator




Further extensions

Pattern-matching for function definition

Shared state, shared channels and races

Inference of type application

(Polymorphism on lambda or on sessions?)



