
Dagstuhl, 13 September 2021

Polymorphic Context-free 
Session Types
Vasco T. Vasconcelos [joint with Bernardo Almeida, Andreia 
Mordido & Peter Thiemann]



FreeST is

• A functional language with


• Support for multithreading (message passing and choice), equipped with


• Session types (context-free, recursion),


• Polymorphic


• Haskell-like syntax


• Call by value


• Impure



Releases

• FreeST 1.0 _ Jul 2020


• Predicative polymorphism (based on ICFP’17)


• FreeST 2.0 _ Feb 2021


• System Fμ (based on paper in arXiv, submitted) 


• Richer kinding system


• FreeST 3.0


• (To be discussed later on)



Google: freest lasige 
 
http://rss.di.fc.ul.pt/tools/freest/ 
http://rss.di.fc.ul.pt/tryit/FreeST

http://rss.di.fc.ul.pt/tools/freest/


Variations on abstracted send 
and receive operations



Polymorphic lambda calculus



Kinds and Subkinding

• M _ Message


• S _ Session


• T _ Type (Top)


• L _ Linear


• U _ Unrestricted (Unlimited)


• TU _ default



Types for primitive operators

• No equally pleasing way to abstract over the choice (select and match) 
operators



Taking advantage of send as an 
operator of a rank 2 type



Context-free sessions



Type abstraction conflicts with 
linearity



A bit of the future



Duality and channel creation

• Minimum support required: a function that builds a type dual to a given type 
(overline T)



The dualof operator is quite handy
FreeST 2.1

• Occurrences of the dualof operator disappear during the elaboration phase of 
the compiler.


• Before elaboration:


• After elaboration (before type checking):



Dualof of a polymorphic variable
FreeST 2.1

• Problem: polymorphic variables


• How do we get rid of dualof when applied to a polymorphic type variable? 



Dualof for polymorphic types
FreeST 2.2

• Introduce co-variables (Lindley Morris, ICFP 16)


• Treat the dualof operator as in the De Morgan Laws (cf. treatment of negation 
in Linear Logic), getting rid of all occurrences of dualof except those applied 
to a type variable; these become co-vars


• Extend type equivalence to account for co-variables



The run abstraction
Freest 2.2

• New becomes a conventional (primitive) poly function


• And we can abstract a quite common pattern: channel creation together with 
fork (cf. LL interpretations of session types)



Higher-order polymorphism, Fω
FreeST 3.0

• Introduce arbitrary type operators


• Then we could have Dualof as a conventional type operator



Further extensions

• Pattern-matching for function definition


• Shared state, shared channels and races


• Inference of type application


• …


• (Polymorphism on lambda or on sessions?)


